Sadržaj se učitava...
mdi-home Početna mdi-account-multiple Djelatnici mdi-script Studiji mdi-layers Katedre mdi-calendar-clock Raspored sati FOI Nastava search apps mdi-login
Odabrana poglavlja statističkih metoda u informacijskim znanostima
Selected Topics in Statistical Methods for Information Science
2020/2021
7 ECTSa
Doktorski studij Informacijske znanosti 1.1 (PDDSIZ)
Katedra za kvantitativne metode
NN
1. semestar
Osnovne informacijemdi-information-variant Izvođači nastavemdi-account-group Nastavni plan i programmdi-clipboard-text-outline Model praćenjamdi-human-male-board Ispitni rokovimdi-clipboard-check-outline Rasporedmdi-calendar-clock Konzultacijemdi-account-voice
Izvođenje kolegija
Studij Studijski program Semestar Obavezan
Doktorski studij Informacijske znanosti 1.1 (PDDSIZ) 1 obavezan
Cilj kolegija
Cilj je upoznati studente s načinom uzorkovanja podataka, njihovog grafičkog i tablealrnog prikazivanja te metodama analize podataka za potrebe znanstveno-istraživačkog rada. Studenti će biti upoznati s načinom postavljanja i dokazivanja hipoteza, s uvjetima za primjenu pojednih metoda te s tehnikama eksplorativnih statističkih metoda u cilju otkrivanja uzoraka u podacima.
Preduvjeti
Kolegij nema definirane preduvjete
Norma kolegija
Predavanja
30 sati
Nastavnik Uloga na kolegiju Oblik nastave Tjedana Sati Grupa
Dobša Jasminka Nositelj Predavanja doktorski studij 1 15 1
Šimić Diana Nositelj Predavanja doktorski studij 1 15 1
Sadržaj predavanja
  • 1. Podaci
    Mjerne skale podataka, varijable, observacije.
  • 2. Kvalitativni podaci
    Deskriptivne statistike, tablica frekvencija, stupčasti dijagram, kontingencijska tablica, nezavisnost kvalitativnih varijabli.
  • 3. Kvantitativni podaci
    Histogram, deskriptivne statistike, box-plot, nezavisnost kvantitativnih varijabli, dijagram rasipanja, korelacija.
  • 4. Nezavisnost kvantitativne i kvalitativne varijable
    Paralelni box-plotovi, točkasti dijagrami.
  • 5. Uzorkovanje
    Koncepti populacije i uzorka, vjerojatnosne razdiobe, parametri razdioba, razdioba uzorkovanja.
  • 6. Procjena parametara
    Paradigma, metode, nepristranost, konzistentnost, učinkovitost.
  • 7. Pripasavanje razdiobe
    Hi-kvadrat test, qq dijagram, Kolmogorov-Smirnov test.
  • 8. Modeli za kvalitativne varijable
    Kontingencijska tablica i hi-kvadrat test, log-linearni model.
  • 9. Opći linearni model
    T-test, linearna regresija, ANOVA, ANCOVA, zajednički okvir, dizajn eksperimenta, fiksni i slučajni efekti.
  • 10. Generalizirani linearni model
    Logistička i Poissonova regresija.
  • 11. Multivarijatne metode
    Korelacijska matrica, MANOVA, kanonička korelacija, kanonička diskriminacijska analiza.
  • 12. Redukcija dimenzionalnosti
    Analiza glavnih komponenti, zajednička faktorska analiza. Primjer u rudarenju tekstualnih dokumenata: latentno semantičko indeksiranje.
  • 13. Udaljenosti / sličnosti
    Matrica udaljenosti / sličnosti, klaster analiza, multidimenzionalno skaliranje.
  • 14. Klasifikacija podataka
    K-najbližih susjeda, stable odlučivanja, metoda potpornih vektora (engl. Support vector machines).
Sadržaj seminara/vježbi
Ishodi učenja kolegija
Ishodi učenja programa
Osnovna literatura
  • 1. de Veaux RD, Velleman PF, Bock DE (2009) Intro Stats (3. izdanje). Boston: Pearson Education Inc. ISBN-13: 978-0-321-50045-8
  • 2. Kalton G (ur.) (1983) Introduction to Survey Sampling. Sage Publications, Inc. ISBN-13: 978-0803921269
  • 3. Milliken GA, Johnson DE (1984) Analysis of Messy Data, Volume I: Designed Experiments. Chapman & Hall. ISBN-13: 978-0-412-99081-6
  • 4. Milliken GA, Johnson DE (1989) Analysis of Messy Data, Volume II: Nonreplicated Experiments. Chapman & Hall. ISBN-13: 978-0-412-06371-8
  • 5. Milliken GA, Johnson DE (2001) Analysis of Messy Data, Volume III: Analysis of Covariance. Chapman & Hall. ISBN-13: 978-1-584-88083-7
  • 6. McCulloch CE, Searle SR, Neuhaus JM (2008) Generalized, Linear, and Mixed Models (2. izdanje, Wiley Series in Probability and Statistics). Wiley-Interscience.
  • 7. Izenman AJ (2008) Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer. ISBN-13: 978-0387781884
  • 8. I.H. Witten, E. Frank (2000) Data Mining,Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, ISBN 1-55860-552-5
  • 9. T.M. Mitchell (1997), Machine Learning, McGraw-Hill
Dopunska literatura
  • 1. Converse JM, Presser S (1986) Survey Questions: Handcrafting the Standardized Questionnaire. Sage Publications, Inc. ISBN-13: 978-0803927438
  • 2. Skrondal A, Rabe-Hesketh S (2004) Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman and Hall/CRC. ISBN-13: 978-1584880004
  • 3. Cowpertwait PSP, Metcalfe AV (2009) Introductory Time Series with R. Springer. ISBN-13: 978-0387886978
  • 4. Ostini R, Nering ML (ur.) (2005) Polytomous Item Response Theory Models (Quantitative Applications in the Social Sciences). Sage Publications, Inc. ISBN-13: 978-0-761-93068-6
  • 5. Simon JL (1997) Resampling: The New Statistics (2nd edition). Resampling Stats. ISBN-13: 978-0534217204 http://www.resample.com/content/text/index.shtml
  • 6. Hoaglin DC, Mosteller F, Tukey JW (ur.) (2000) Understanding Robust and Exploratory Data Analysis. Wiley-Interscience. ISBN-13: 978-0471384915
  • 7. Aldenderfer MS, Blashfield RK (1984) Cluster Analysis. Sage Publications, Inc. ISBN-13: 978-0803923768
  • 8. Lynch SM (2009) Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. New York: Springer. ISBN-13: 978-1441924346
  • 9. Gwet KL (2010) Handbook of Inter-Rater Reliability (2. izdanje) Advanced Analytics, LLC. ISBN-13: 978-0970806222
  • 10. Duda RO, Hart PE, Stork DG (2001) Pattern Classification, 2. izdanje, John Wiley and Sons, ISBN 0-471-05669-3
  • 11. Berry MJA, Linoff G (2000) Mastering Data Mininbg: The Art and Science of Customer Relationship Management, 2. izdanje, John Wiley and Sons, ISBN 0-471-33123-6
Slični kolegiji
  • University of Pittsburgh School of Information Science Graduate programme Informations Science and Technology. Intermediate analytical course in applied statistical methods: vector and matrix notation, multiple correlation and regression, T and F distributions, analysis of variance, planned comparisons and post hoc comparisons, analysis of covariance, and nonparametric techniques. Utilizes SPSS statistical programming package.
  • University of Pittsburgh School of Information Science Graduate programme Informations Science and Technology. Introduction to data-mining techniques, including data preprocessing, data-mining primitives, association rules, decision trees, cluster analysis, classification and machine learning, data visualization, and data warehousing. Detailed applications from a wide variety of domains.
  • University of Hawaii The Department of Information and Computer Sciences and the Library and Information Science Program in the College of Natural Sciences, the School of Communications in the College of Social Sciences, and the Department of Information Technology Management in the Shidler College of Business. Interdisciplinary Ph.D. program in Information and Communication Sciences. Introductory statistics in education and social sciences. Topics include probability distributions; sampling distributions; hypothesis testing using t-tests, correlation, simple regression, ANOVA; and applications in research. (Meets PhD common inquiry methods requirement or elective.)
  • University of Hawaii The Department of Information and Computer Sciences and the Library and Information Science Program in the College of Natural Sciences, the School of Communications in the College of Social Sciences, and the Department of Information Technology Management in the Shidler College of Business. Interdisciplinary Ph.D. program in Information and Communication Sciences. The analysis and interpretation of behavioral science data using common statistical software packages. (Crosslisted as SW 652).
  • University of Hawaii The Department of Information and Computer Sciences and the Library and Information Science Program in the College of Natural Sciences, the School of Communications in the College of Social Sciences, and the Department of Information Technology Management in the Shidler College of Business. Interdisciplinary Ph.D. program in Information and Communication Sciences. Advanced application of general linear model to complex problems of data analysis. Relation of analysis of variance and covariance to regression analysis. Non-linearity and treatment of missing data. Class requires basic statistics.
  • University of Hawaii The Department of Information and Computer Sciences and the Library and Information Science Program in the College of Natural Sciences, the School of Communications in the College of Social Sciences, and the Department of Information Technology Management in the Shidler College of Business. Interdisciplinary Ph.D. program in Information and Communication Sciences. Theory and method of factor analysis and related methods of multivariate analysis.
  • University of Hawaii The Department of Information and Computer Sciences and the Library and Information Science Program in the College of Natural Sciences, the School of Communications in the College of Social Sciences, and the Department of Information Technology Management in the Shidler College of Business. Interdisciplinary Ph.D. program in Information and Communication Sciences. Multivariate forms of multiple linear regression, analysis of variance and co-variance. Multiple discriminant analysis, canonical correlation, and principal-components analysis are discussed.
Redoviti studenti Izvanredni studenti
U kalendaru ispod se nalaze konzultacije predmetnih nastavnika, no za detalje o konzultacijama možete provjeriti na profilu pojedinog predmetnog nastavnika.
2024 © Fakultet organizacije i informatike, Centar za razvoj programskih proizvoda